Synthesis and Characterization of Rubber Seed Shell-Derived Activated Carbon by KOH Activation
DOI:
https://doi.org/10.58330/inovasia.v2i2.353Keywords:
Activated Carbon, KOH, Rubber Seed-Shell (RSS)Abstract
This study presents the preparation and characterization of activated carbon derived from rubber seed shells using potassium hydroxide (KOH) activation. The raw material for this investigation was obtained from rubber seed shells collected from local rubber plantations in Palangka Raya. The activation process involved the use of the chemical activator KOH at a 1:1 carbon-to-KOH ratio in 200 mL of distilled water for a duration of 24 hours. X-ray Diffraction (XRD) analysis confirmed that the resulting activated carbon exhibited an amorphous structure, and all Fourier-Transform Infrared Spectroscopy (FTIR) spectra indicated the presence of functional groups in the activated carbon. The activated carbon possessed a porous structure with a surface area and total pore volume of 2.24 m2/g and 0.02 cm3/g, respectively. These findings necessitate further optimization of the activation process to achieve a larger surface area, thus enabling its application in electronic materials, water treatment, and various other fields.
Downloads
References
Altalhi, A. A., Mohammed, Eslam. A., Morsy, Salwa. S. M., Negm, Nabel. A., & Farag, A. A. (2021). Catalyzed production of different grade biofuels using metal ions modified activated carbon of cellulosic wastes. Fuel, 295, 120646. https://doi.org/10.1016/j.fuel.2021.120646
Efiyanti, L., Wati, S. A., & Maslahat, M. (2020). Pembuatan dan Analisis Karbon Aktif dari Cangkang Buah Karet dengan Proses Kimia dan Fisika. Jurnal Ilmu Kehutanan, 14(1), 94. https://doi.org/10.22146/jik.57479
González-García, P. (2018). Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renewable and Sustainable Energy Reviews, 82, 1393–1414. https://doi.org/10.1016/j.rser.2017.04.117
Gunawan, S., Hasan, H., Pendidikan Teknik Mesin/Fakultas Teknik, Universitas Negeri Medan, Lubis, R. D. W., & Fakultas Teknik, Universitas Muhammadiyah Sumatera Utara. (2020). Pemanfaatan Adsorben dari Tongkol Jagung sebagai Karbon Aktif untuk Mengurangi Emisi Gas Buang Kendaraan Bermotor. Jurnal Rekayasa Material, Manufaktur dan Energi, 3(1), 38–47. https://doi.org/10.30596/rmme.v3i1.4527
Hu, Q., Liu, H., Zhang, Z., & Xie, Y. (2020). Nitrate removal from aqueous solution using polyaniline modified activated carbon: Optimization and characterization. Journal of Molecular Liquids, 309, 113057. https://doi.org/10.1016/j.molliq.2020.113057
Husin, A., & Hasibuan, A. (2020). Studi Pengaruh Variasi Konsentrasi Asam Posfat (H3PO4) dan Waktu Perendaman Karbon terhadap Karakteristik Karbon Aktif dari Kulit Durian. Jurnal Teknik Kimia USU, 9(2), 80–86. https://doi.org/10.32734/jtk.v9i2.3728
Idrees, M., Rangari, V., & Jeelani, S. (2018). Sustainable packaging waste-derived activated carbon for carbon dioxide capture. Journal of CO2 Utilization, 26, 380–387. https://doi.org/10.1016/j.jcou.2018.05.016
Kar, K. K. (Ed.). (2020). Handbook of Nanocomposite Supercapacitor Materials I: Characteristics (Vol. 300). Springer International Publishing. https://doi.org/10.1007/978-3-030-43009-2
Khan, E. A., Shahjahan, & Khan, T. A. (2018). Adsorption of methyl red on activated carbon derived from custard apple ( Annona squamosa ) fruit shell: Equilibrium isotherm and kinetic studies. Journal of Molecular Liquids, 249, 1195–1211. https://doi.org/10.1016/j.molliq.2017.11.125
Masriatini, R., Fatimura, M., & Putri, F. (2020). Pemanfaatan Limbah Kulit Pisang Menjadi Karbon Aktif Dengan Variasi Konsentrasi Aktivator NaCl. Jurnal Redoks, 5(2), 87. https://doi.org/10.31851/redoks.v5i2.4924
Maulinda, L., Za, N., & Sari, D. N. (2015). Pemanfaatan Kulit Singkong sebagai Bahan Baku Karbon Aktif. Jurnal Teknologi Kimia Unimal, 4(2). https://doi.org/10.29103/jtku.v4i2.69
Mokti, N., Borhan, A., Zaine, S. N. A., & Mohd Zaid, H. F. (2021). Development of Rubber Seed Shell–Activated Carbon Using Impregnated Pyridinium-Based Ionic Liquid for Enhanced CO2 Adsorption. Processes, 9(7), 1161. https://doi.org/10.3390/pr9071161
Pagketanang, T., Wongwicha, P., & Thabuot, M. (2015). Characteristics of activated carbon produced from rubber seed shell by using different methods of chemical activation with KOH. Applied Mechanics and Materials, 781, 659–662.
Perdani, F. P., Riyanto, C. A., & Martono, Y. (2021). Karakterisasi Karbon Aktif Kulit Singkong (Manihot esculenta Crantz) Berdasarkan Variasi Konsentrasi H3PO4 dan Lama Waktu Aktivasi. IJCA (Indonesian Journal of Chemical Analysis), 4(2), 72–81. https://doi.org/10.20885/ijca.vol4.iss2.art4
Romanos, J., Beckner, M., Stalla, D., Tekeei, A., Suppes, G., Jalisatgi, S., Lee, M., Hawthorne, F., Robertson, J. D., Firlej, L., Kuchta, B., Wexler, C., Yu, P., & Pfeifer, P. (2013). Infrared study of boron–carbon chemical bonds in boron-doped activated carbon. Carbon, 54, 208–214. https://doi.org/10.1016/j.carbon.2012.11.031
Saleh, T. A., & Danmaliki, G. I. (2016). Influence of acidic and basic treatments of activated carbon derived from waste rubber tires on adsorptive desulfurization of thiophenes. Journal of the Taiwan Institute of Chemical Engineers, 60, 460–468. https://doi.org/10.1016/j.jtice.2015.11.008
Song, M., Jin, B., Xiao, R., Yang, L., Wu, Y., Zhong, Z., & Huang, Y. (2013). The comparison of two activation techniques to prepare activated carbon from corn cob. Biomass and Bioenergy, 48, 250–256. https://doi.org/10.1016/j.biombioe.2012.11.007
Suhdi, S., & Wang, S.-C. (2021). The Production of Carbon Nanofiber on Rubber Fruit Shell-Derived Activated Carbon by Chemical Activation and Hydrothermal Process with Low Temperature. Nanomaterials, 11(8), 2038. https://doi.org/10.3390/nano11082038
Yakout, S. M., Daifullah, A. A. M., El-Reefy, S. A., & Ali, H. F. (2015). Surface modification and characterization of a RS activated carbon: Density, yield, XRD, ash, and moisture content. Desalination and Water Treatment, 53(3), 718–726. https://doi.org/10.1080/19443994.2013.846538
Zhao, J., Yu, L., Ma, H., Zhou, F., Yang, K., & Wu, G. (2020). Corn stalk-based activated carbon synthesized by a novel activation method for high-performance adsorption of hexavalent chromium in aqueous solutions. Journal of Colloid and Interface Science, 578, 650–659. https://doi.org/10.1016/j.jcis.2020.06.031

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Gabriela Elsandika, Budi Hariyanto, Lady M. Panggabean, Feridah A. Sihombing, Luqman Hakim

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.