16S Metagenomics Of Branch-Leaf Compost At The Expo Memorial Park Osaka
16S Metagenomik Kompos Cabang-Daun Di The Expo Memorial Park Osaka
DOI:
https://doi.org/10.58330/prevenire.v2i2.187Keywords:
16S rRNA genes, compost, metagenome, microbial diversityAbstract
Compost is one of the potential microbial habitats for the discovery of a wide range of novel biocatalysts. Compost sample originally made of plant litter, were collected at the Expo Park (Osaka, Japan). The temperature of composts is around 50 °C. Metagenomic DNA was isolated from compost and was used to amplify partial 16S rRNA genes (rDNAs) by polymerase chain reaction for investigation of the microbial diversity in the compost. Molecular microbial identification was carried out by metagenome analysis of 16S rRNA using MinION Next Generation Sequencing (NGS). The results indicated that branch-leaf compost sample from Expo Park is dominated by thermophilic microorganism. The majority of bacteria are Caldicoprobacter, Hungateiclostridium, and Thermoclostridium. To conclude, thermophilic microorganism is not only found in extreme environment, they also presence even in moderate temperature.
Downloads
References
Akaçin, İ., Ersoy, Ş., Doluca, O., & Güngörmüşler, M. (2022). Comparing the significance of the utilization of next generation and third generation sequencing technologies in microbial metagenomics. Microbiological Research, 264(February), 0–2. https://doi.org/10.1016/j.micres.2022.127154
Asano, R., Otawa, K., Ozutsumi, Y., Yamamoto, N., Abdel-Mohsein, H. S., & Nakai, Y. (2010). Development and analysis of microbial characteristics of an acidulocomposting system for the treatment of garbage and cattle manure. Journal of Bioscience and Bioengineering, 110(4), 419–425. https://doi.org/10.1016/j.jbiosc.2010.04.006
Biyada, S., Merzouki, M., Dėmčėnko, T., Vasiliauskienė, D., Ivanec-Goranina, R., Urbonavičius, J., Marčiulaitienė, E., Vasarevičius, S., & Benlemlih, M. (2021). Microbial community dynamics in the mesophilic and thermophilic phases of textile waste composting identified through next-generation sequencing. Scientific Reports, 11(1), 1–11. https://doi.org/10.1038/s41598-021-03191-1
Costea, P. I., Zeller, G., Sunagawa, S., Pelletier, E., Alberti, A., Levenez, F., Tramontano, M., Driessen, M., Hercog, R., Jung, F. E., Kultima, J. R., Hayward, M. R., Coelho, L. P., Allen-Vercoe, E., Bertrand, L., Blaut, M., Brown, J. R. M., Carton, T., Cools-Portier, S., … Bork, P. (2017). Towards standards for human fecal sample processing in metagenomic studies. Nature Biotechnology, 35(11), 1069–1076. https://doi.org/10.1038/nbt.3960
Cuscó, A., Catozzi, C., Viñes, J., Sanchez, A., & Francino, O. (2019). Microbiota profiling with long amplicons using Nanopore sequencing: Full-length 16S rRNA gene and the 16S-ITS-23S of the rrn operon. F1000Research, 7, 1–25. https://doi.org/10.12688/f1000research.16817.2
Fierer, N., Jackson, J. A., Vilgalys, R., & Jackson, R. B. (2005). Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Applied and Environmental Microbiology, 71(7), 4117–4120. https://doi.org/10.1128/AEM.71.7.4117-4120.2005
Honeker, L. K., Root, R. A., Chorover, J., & Maier, R. M. (2016). Resolving colocalization of bacteria and metal(loid)s on plant root surfaces by combining fluorescence in situ hybridization (FISH) with multiple-energy micro-focused X-ray fluorescence (ME μXRF). Journal of Microbiological Methods, 131, 23–33. https://doi.org/10.1016/j.mimet.2016.09.018
Jovel, J., Patterson, J., Wang, W., Hotte, N., O’Keefe, S., Mitchel, T., Perry, T., Kao, D., Mason, A. L., Madsen, K. L., & Wong, G. K. S. (2016). Characterization of the gut microbiome using 16S or shotgun metagenomics. Frontiers in Microbiology, 7(APR), 1–17. https://doi.org/10.3389/fmicb.2016.00459
Jünemann, S., Kleinbölting, N., Jaenicke, S., Henke, C., Hassa, J., Nelkner, J., Stolze, Y., Albaum, S. P., Schlüter, A., Goesmann, A., Sczyrba, A., & Stoye, J. (2017). Bioinformatics for NGS-based metagenomics and the application to biogas research. Journal of Biotechnology, 261(March), 10–23. https://doi.org/10.1016/j.jbiotec.2017.08.012
Kong, W., Sun, B., Zhang, J., Zhang, Y., Gu, L., Bao, L., & Liu, S. (2020). Metagenomic analysis revealed the succession of microbiota and metabolic function in corncob composting for preparation of cultivation medium for Pleurotus ostreatus. Bioresource Technology, 306(January), 123156. https://doi.org/10.1016/j.biortech.2020.123156
Laver, T., Harrison, J., O’Neill, P. A., Moore, K., Farbos, A., Paszkiewicz, K., & Studholme, D. J. (2015). Assessing the performance of the Oxford Nanopore Technologies MinION. Biomolecular Detection and Quantification, 3, 1–8. https://doi.org/10.1016/j.bdq.2015.02.001
López, M. J., Jurado, M. M., López-González, J. A., Estrella-González, M. J., Martínez-Gallardo, M. R., Toribio, A., & Suárez-Estrella, F. (2021). Characterization of Thermophilic Lignocellulolytic Microorganisms in Composting. Frontiers in Microbiology, 12(August), 1–13. https://doi.org/10.3389/fmicb.2021.697480
Onyemata, E. J., Jonathan, E., Balogun, O., Agala, N., Ozumba, P. J., Croxton, T., Nadoma, S., Anazodo, T. G., Peters, S., Beiswanger, C. M., & Abimiku, A. (2021). Affordable method for quality DNA for genomic research in low to middle-income country research settings. Analytical Biochemistry, 614(November 2020), 114023. https://doi.org/10.1016/j.ab.2020.114023
Shendure, J., Mitra, R. D., Varma, C., & Church, G. M. (2004). Advanced sequencing technologies: Methods and goals. Nature Reviews Genetics, 5(5), 335–344. https://doi.org/10.1038/nrg1325
Shyu, C., Soule, T., Bent, S. J., Foster, J. A., & Forney, L. J. (2007). MiCA: A web-based tool for the analysis of microbial communities based on terminal-restriction fragment length polymorphisms of 16S and 18S rRNA genes. Microbial Ecology, 53(4), 562–570. https://doi.org/10.1007/s00248-006-9106-0
Streit, W. R., & Schmitz, R. A. (2004). Metagenomics - The key to the uncultured microbes. Current Opinion in Microbiology, 7(5), 492–498. https://doi.org/10.1016/j.mib.2004.08.002
Wan, L., Wang, X., Cong, C., Li, J., Xu, Y., Li, X., Hou, F., Wu, Y., & Wang, L. (2020). Effect of inoculating microorganisms in chicken manure composting with maize straw. Bioresource Technology, 301(November 2019), 122730. https://doi.org/10.1016/j.biortech.2019.122730
Wei, Z., Xi, B., Zhao, Y., Wang, S., Liu, H., & Jiang, Y. (2007). Effect of inoculating microbes in municipal solid waste composting on characteristics of humic acid. Chemosphere, 68(2), 368–374. https://doi.org/10.1016/j.chemosphere.2006.12.067
Wiharyani, R., Hardianto, D., Kusumaningrum, H. P., & Budiharjo, A. (2014). Kloning Gen pcbC dari Penicillium chrysogenum ke dalam Plasmid pPICZA untuk Pengembangan Produksi Penisilin G. Bioma : Berkala Ilmiah Biologi, 16(1), 33. https://doi.org/10.14710/bioma.16.1.33-38
Xu, J., Jiang, Z., Li, M., & Li, Q. (2019). A compost-derived thermophilic microbial consortium enhances the humification process and alters the microbial diversity during composting. Journal of Environmental Management, 243(April), 240–249. https://doi.org/10.1016/j.jenvman.2019.05.008
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Fera Aulia, Risma Wiharyanti, Karan Lohmaneeratana

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


