16S Metagenomics Of Branch-Leaf Compost At The Expo Memorial Park Osaka

16S Metagenomik Kompos Cabang-Daun Di The Expo Memorial Park Osaka

Authors

  • Fera Aulia Universitas Negeri Yogyakarta
  • Risma Wiharyanti Universitas Negeri Yogyakarta

DOI:

https://doi.org/10.58330/prevenire.v2i2.187

Keywords:

16S rRNA genes, compost, metagenome, microbial diversity

Abstract

Compost is one of the potential microbial habitats for the discovery of a wide range of novel biocatalysts. Compost sample originally made of plant litter, were collected at the Expo Park (Osaka, Japan). The temperature of composts is around 50 °C. Metagenomic DNA was isolated from compost and was used to amplify partial 16S rRNA genes (rDNAs) by polymerase chain reaction for investigation of the microbial diversity in the compost. Molecular microbial identification was carried out by metagenome analysis of 16S rRNA using MinION Next Generation Sequencing (NGS). The results indicated that branch-leaf compost sample from Expo Park is dominated by thermophilic microorganism. The majority of bacteria are Caldicoprobacter, Hungateiclostridium, and Thermoclostridium. To conclude, thermophilic microorganism is not only found in extreme environment, they also presence even in moderate temperature.

Downloads

Download data is not yet available.

References

Akaçin, İ., Ersoy, Ş., Doluca, O., & Güngörmüşler, M. (2022). Comparing the significance of the utilization of next generation and third generation sequencing technologies in microbial metagenomics. Microbiological Research, 264(February), 0–2. https://doi.org/10.1016/j.micres.2022.127154

Asano, R., Otawa, K., Ozutsumi, Y., Yamamoto, N., Abdel-Mohsein, H. S., & Nakai, Y. (2010). Development and analysis of microbial characteristics of an acidulocomposting system for the treatment of garbage and cattle manure. Journal of Bioscience and Bioengineering, 110(4), 419–425. https://doi.org/10.1016/j.jbiosc.2010.04.006

Biyada, S., Merzouki, M., Dėmčėnko, T., Vasiliauskienė, D., Ivanec-Goranina, R., Urbonavičius, J., Marčiulaitienė, E., Vasarevičius, S., & Benlemlih, M. (2021). Microbial community dynamics in the mesophilic and thermophilic phases of textile waste composting identified through next-generation sequencing. Scientific Reports, 11(1), 1–11. https://doi.org/10.1038/s41598-021-03191-1

Costea, P. I., Zeller, G., Sunagawa, S., Pelletier, E., Alberti, A., Levenez, F., Tramontano, M., Driessen, M., Hercog, R., Jung, F. E., Kultima, J. R., Hayward, M. R., Coelho, L. P., Allen-Vercoe, E., Bertrand, L., Blaut, M., Brown, J. R. M., Carton, T., Cools-Portier, S., … Bork, P. (2017). Towards standards for human fecal sample processing in metagenomic studies. Nature Biotechnology, 35(11), 1069–1076. https://doi.org/10.1038/nbt.3960

Cuscó, A., Catozzi, C., Viñes, J., Sanchez, A., & Francino, O. (2019). Microbiota profiling with long amplicons using Nanopore sequencing: Full-length 16S rRNA gene and the 16S-ITS-23S of the rrn operon. F1000Research, 7, 1–25. https://doi.org/10.12688/f1000research.16817.2

Fierer, N., Jackson, J. A., Vilgalys, R., & Jackson, R. B. (2005). Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Applied and Environmental Microbiology, 71(7), 4117–4120. https://doi.org/10.1128/AEM.71.7.4117-4120.2005

Honeker, L. K., Root, R. A., Chorover, J., & Maier, R. M. (2016). Resolving colocalization of bacteria and metal(loid)s on plant root surfaces by combining fluorescence in situ hybridization (FISH) with multiple-energy micro-focused X-ray fluorescence (ME μXRF). Journal of Microbiological Methods, 131, 23–33. https://doi.org/10.1016/j.mimet.2016.09.018

Jovel, J., Patterson, J., Wang, W., Hotte, N., O’Keefe, S., Mitchel, T., Perry, T., Kao, D., Mason, A. L., Madsen, K. L., & Wong, G. K. S. (2016). Characterization of the gut microbiome using 16S or shotgun metagenomics. Frontiers in Microbiology, 7(APR), 1–17. https://doi.org/10.3389/fmicb.2016.00459

Jünemann, S., Kleinbölting, N., Jaenicke, S., Henke, C., Hassa, J., Nelkner, J., Stolze, Y., Albaum, S. P., Schlüter, A., Goesmann, A., Sczyrba, A., & Stoye, J. (2017). Bioinformatics for NGS-based metagenomics and the application to biogas research. Journal of Biotechnology, 261(March), 10–23. https://doi.org/10.1016/j.jbiotec.2017.08.012

Kong, W., Sun, B., Zhang, J., Zhang, Y., Gu, L., Bao, L., & Liu, S. (2020). Metagenomic analysis revealed the succession of microbiota and metabolic function in corncob composting for preparation of cultivation medium for Pleurotus ostreatus. Bioresource Technology, 306(January), 123156. https://doi.org/10.1016/j.biortech.2020.123156

Laver, T., Harrison, J., O’Neill, P. A., Moore, K., Farbos, A., Paszkiewicz, K., & Studholme, D. J. (2015). Assessing the performance of the Oxford Nanopore Technologies MinION. Biomolecular Detection and Quantification, 3, 1–8. https://doi.org/10.1016/j.bdq.2015.02.001

López, M. J., Jurado, M. M., López-González, J. A., Estrella-González, M. J., Martínez-Gallardo, M. R., Toribio, A., & Suárez-Estrella, F. (2021). Characterization of Thermophilic Lignocellulolytic Microorganisms in Composting. Frontiers in Microbiology, 12(August), 1–13. https://doi.org/10.3389/fmicb.2021.697480

Onyemata, E. J., Jonathan, E., Balogun, O., Agala, N., Ozumba, P. J., Croxton, T., Nadoma, S., Anazodo, T. G., Peters, S., Beiswanger, C. M., & Abimiku, A. (2021). Affordable method for quality DNA for genomic research in low to middle-income country research settings. Analytical Biochemistry, 614(November 2020), 114023. https://doi.org/10.1016/j.ab.2020.114023

Shendure, J., Mitra, R. D., Varma, C., & Church, G. M. (2004). Advanced sequencing technologies: Methods and goals. Nature Reviews Genetics, 5(5), 335–344. https://doi.org/10.1038/nrg1325

Shyu, C., Soule, T., Bent, S. J., Foster, J. A., & Forney, L. J. (2007). MiCA: A web-based tool for the analysis of microbial communities based on terminal-restriction fragment length polymorphisms of 16S and 18S rRNA genes. Microbial Ecology, 53(4), 562–570. https://doi.org/10.1007/s00248-006-9106-0

Streit, W. R., & Schmitz, R. A. (2004). Metagenomics - The key to the uncultured microbes. Current Opinion in Microbiology, 7(5), 492–498. https://doi.org/10.1016/j.mib.2004.08.002

Wan, L., Wang, X., Cong, C., Li, J., Xu, Y., Li, X., Hou, F., Wu, Y., & Wang, L. (2020). Effect of inoculating microorganisms in chicken manure composting with maize straw. Bioresource Technology, 301(November 2019), 122730. https://doi.org/10.1016/j.biortech.2019.122730

Wei, Z., Xi, B., Zhao, Y., Wang, S., Liu, H., & Jiang, Y. (2007). Effect of inoculating microbes in municipal solid waste composting on characteristics of humic acid. Chemosphere, 68(2), 368–374. https://doi.org/10.1016/j.chemosphere.2006.12.067

Wiharyani, R., Hardianto, D., Kusumaningrum, H. P., & Budiharjo, A. (2014). Kloning Gen pcbC dari Penicillium chrysogenum ke dalam Plasmid pPICZA untuk Pengembangan Produksi Penisilin G. Bioma : Berkala Ilmiah Biologi, 16(1), 33. https://doi.org/10.14710/bioma.16.1.33-38

Xu, J., Jiang, Z., Li, M., & Li, Q. (2019). A compost-derived thermophilic microbial consortium enhances the humification process and alters the microbial diversity during composting. Journal of Environmental Management, 243(April), 240–249. https://doi.org/10.1016/j.jenvman.2019.05.008

Downloads

Published

2023-04-06

Issue

Section

Articles

How to Cite

16S Metagenomics Of Branch-Leaf Compost At The Expo Memorial Park Osaka: 16S Metagenomik Kompos Cabang-Daun Di The Expo Memorial Park Osaka. (2023). Prevenire: Journal of Multidisciplinary Science, 2(2), 76-83. https://doi.org/10.58330/prevenire.v2i2.187